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Task Definition

Context: The official language of Germany is Standard German, with over
95 percent of the country speaking Standard German or German dialects as
their first language. 1

Q: What language do people speak in
Germany?
A French
B Russian
C German

1https://en.wikipedia.org/wiki/Languages_of_Germany
https://quizzykid.com/quiz/general-knowledge-quiz-with-answers-multiple-choice/
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Task Definition

Context: The tomato is the edible, often red, berry of the plant Solanum
lycopersicum, commonly known as a tomato plant. 1

Q: What is color is the tomato?
A Red
B Yellow
C White

1https://en.wikipedia.org/wiki/Tomato
https://quizzykid.com/quiz/general-knowledge-quiz-with-answers-multiple-choice/
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Task Definition

This is not that hard, right?
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Task Definition

Context: Leur couleur, d’abord verdâtre, tourne généralement au rouge à
maturité. . . 1

Q: De quelle couleur est une tomate?
A Rouge
B Jaune
C Blanche

1https://fr.wikipedia.org/wiki/Tomate
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Task Definition

Context: Плодът е съестен, ярко оцветен (обикновено червен от
пигмента ликопен) месест семков плод. . . 1

Q: Какъв цвят е доматът?
A Червен
B Жълт
C Бял

1https://bg.wikipedia.org/wiki/%D0%94%D0%BE%D0%BC%D0%B0%D1%82
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Task Definition

Still doable?
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Data & Preprocessing

What data is there, and how is it different?
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Data & Preprocessing

A lot of work for English:

I Extractive RC (MS MARCO, NewsQA, TriviaQA, SQuAD, CoQA)
[Nguyen et al., 2016, Trischler et al., 2017, Joshi et al., 2017,
Rajpurkar et al., 2018, Reddy et al., 2019]

I Non-extractive RC (MCTest, RACE, ARC, OpenBookQA, DREAM)
[Richardson et al., 2013, Lai et al., 2017, Clark et al., 2018,
Mihaylov et al., 2018, Sun et al., 2019a]

We chose RACE dataset for the English training [Lai et al., 2017]

I Non-extractive multiple-choice type with context passages
I Designed by educational experts
I Expected to be well-structured and error-free [Sun et al., 2019a]
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Data & Preprocessing

What about non-English datasets?
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Data & Preprocessing

No suitable dataset available (too few examples, different domains,
not multiple-choice, etc.)

We have built our own dataset for Bulgarian (2,633 questions, no
contexts)
Two question categories:

I Online History Quizzes (Easier)
I 12th Grade Matriculation Exam (Hard)

Manually filtered out questions:

I with non-textual content (i.e., pictures, paintings, drawings, etc.)
I ordering questions (i.e., order the historical events)
I questions involving calculations (i.e., how much X we need to add to

Y to arrive at Z )
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Data statistics

Domain #QA-pairs #Choices Len Question Len Options Vocabulary Size
12th Grade Matriculation Exam

Biology 437 4 10.4 2.6 2, 414 (12, 922)
Philosophy 630 4 8.9 2.9 3, 636 (20, 392)
Geography 612 4 12.8 2.5 3, 239 (17, 668)
History 542 4 23.7 3.6 5, 466 (20, 456)

Online History Quizzes
Bulgarian History 229 4 14.0 2.8 2, 287 (10, 620)
PzHistory 183 3 38.9 2.4 1, 261 (7, 518)
Overall 2, 633 3.9 15.7 2.9 13, 329 (56, 104)

RACE Train - Mid and High School
RACE-M 25, 421 4 9.0 3.9 32, 811
RACE-H 62, 445 4 10.4 5.8 125, 120
Overall 87, 866 4 10.0 5.3 136, 629

Table: Statistics about our Bulgarian dataset compared to the RACE dataset.
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Model Overview
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Context Retriever

Dumps for the entire Wikipage1

Removing links, HTML tags, tables, etc.
Two document splitting strategies:

I paragraph
I sliding window

Query is formed from a question and possible answers
Matching with cosine similarity and BM25 (Improved TF.IDF)
[Robertson and Zaragoza, 2009]

1http://dumps.wikimedia.org/
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BERT for Reading Comprehension

Model input: [CLS] Passage [SEP] Question + Option [SEP]
Task-specific parameter vector L, L ∈ RH , where H is the hidden size
of the model
Maximizing the log-probability of the correct answer
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Answer Selection Strategies

Why do we need something special? Why not just the argmax?

The first hit is not always the best
The retriever can be extremely sensitive to the question formulation

How do we fix it? – Use multiple documents to obtain better “correctness
distribution”

Strategy Formalization

Pr(aj |p; q) =
exp(BERT (p, q + aj))∑
j′ exp(BERT (p, q + aj ′))

, (1)

where p is a passage, q is a question, A is the set of answer candidates,
and aj ∈ A.

Ans = argmax
a∈A

∑
p∈P

Pr(A|p; q) (2)
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BERT Fine-Tuning
Fine-tuning on English multiple-choice questions from the RACE dataset.

On top of two flavours of BERT:
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BERT Fine-Tuning

Fine-tuning on English multiple-choice questions from the RACE dataset.
On top of two flavours of BERT:

Multilingual
BERTbase Cased (12-layers,
768-hidden, 12-heads)
Pre-trained on 104 languages

vs. Slavic
Additional training on Slavic
languages (BG, CZ, PL, RU)
News + Wikipedia articles
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Results on the English Task

#Epoch RACE-M RACE-H Overall

BERT 1 64.21 53.66 56.73
BERT 2 68.80 57.58 60.84
BERT 3 69.15 58.43 61.55
Slavic 2 53.55 44.48 47.12
Slavic 3 57.38 46.88 49.94

Table: Accuracy measured on the dev RACE dataset after each training epoch.
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Zero-Shot Transfer to Bulgarian

Figure: Accuracy on the Bulgarian testset
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Impact of the Query Result Size

We experiment with query sizes Sq ∈ {1, 2, 5, 10, 20}

Results are averaged over all experiments
Up to Sq ×#Options hits
Duplicates are merged
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Examples I

Retrieved Contexts:
1 The hair cover is a rare and rough bristle. In winter, soft and dense

hair develops between them. Color ranges from dark brown to gray,
individually and geographically diverse

Question Prctx(1)

3 Q: The thick coat of mammals in winter is an example of:
A. physiological adaptation 0.19
B. behavioral adaptation 0.19
C. genetic adaptation 0.15
D. morphological adaptation 0.47
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Examples II
Retrieved Contexts:

1 Moral relativism
2 In ethics, relativism is opposed to absolutism. Whilst absolutism

asserts the belief that there are universal ethical standards that are
inflexible and absolute, relativism claims that ethical norms vary and
differ from age to age and in different cultures and situations. It can
also be called epistemological relativism - a denial of absolute
standards of truth evaluation.

Question Prctx(1) Prctx(2)

7 Q: According to relativism in ethics:
A. there is only one moral law that is valid for
all

0.45 0.28

B. there is no absolute good and evil 0.24 0.41
C. people are evil by nature 0.09 0.10
D. there is only good, and the evil is seeming 0.21 0.22
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Literature Review I
Machine Reading Comprehension

Usage of external knowledge:
I Wikipedia for answering open-domain questions [Chen et al., 2017a]
I Entity discovery and linking [Pan et al., 2018]
I Semi-automatically constructed knowledge base [Clark et al., 2016]

Question/Answer reformulation:
I Finding essential terms, and query reformulation [Ni et al., 2019]
I Conversion to declarative sentences and linguistic units

[Simov et al., 2012]

Application of reading strategies [Sun et al., 2019b]
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Literature Review II
(Zero-Shot) Multilingual Models

Fine-tuned multilingual language models BERT [Devlin et al., 2019],
and XLM [Lample and Conneau, 2019]

Shared model:
I Seq2Seq with a special token for each language [Johnson et al., 2017]
I Many-to-one language training with a shared attention layer

[Firat et al., 2016]
I Many-to-many languages with a single Transformer

model [Aharoni et al., 2019]
Pivot-language approaches:

I Student-teacher framework for NMT [Chen et al., 2017b]
I Translation and soft-alignment for MRC [Asai et al., 2018]
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Conclusions & Future Work

Conclusions
Collected a corpus in Bulgarian with 2,633 questions 2

Designed a general-purpose pipeline for multiple-choice MRC
Studied the effectiveness of zero-shot transferred model from English
to Bulgarian
Achieved 42.24% accuracy (well above the baseline of 24.89%)

Future Work
Reading strategies [Sun et al., 2019b]
Linked entities [Pan et al., 2018]
Reformulation of questions and passages
[Simov et al., 2012, Clark et al., 2016, Ni et al., 2019]
Re-ranking of documents [Nogueira and Cho, 2019]

2Dataset and source code: http://github.com/mhardalov/bg-reason-BERT
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Results

Setting Accuracy

Random 24.89
Train for 3 epochs –
+ window & title.bg & pass.ngram 29.62
+ passage.bg & passage 39.35
– title.bg 39.69
+ passage.bg^2 40.26
+ title.bg^2 40.30
+ bigger window 36.54
+ paragraph split 42.23
+ Slavic pre-training 33.27
Train for 1 epoch best 40.26
Train for 2 epochs best 41.89

Table: Accuracy on the Bulgarian testset: ablation study when sequentially
adding/removing different model components.



Results per category

#docs Overall biology-12th philosophy-12th geography-12th history-12th history-quiz

Paragraph
title.bulgarian^2, passage.ngram, passage, passage.bulgarian^2

1 41.82 41.42 42.06 38.07 40.96 48.54
2 42.23 42.56 43.17 35.62 42.99 49.27
5 41.59 43.25 40.32 38.73 40.04 48.06
10 39.46 40.96 38.41 36.93 39.85 42.72
20 37.52 39.13 37.62 34.64 38.56 38.59

Slavic BERT
1 33.19 30.89 33.17 28.76 32.29 43.45
2 33.27 31.58 31.90 31.21 35.24 37.62
5 31.14 30.21 30.16 29.25 31.00 36.65
10 30.42 29.29 29.68 29.74 31.92 31.80
20 29.66 28.60 29.37 28.43 32.10 29.85

Table: Evaluation results for the Bulgarian multiple-choice reading comprehension
task: comparison of various indexing and query strategies.
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